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Abstract

Two mathematical models for tumor anti-angiogenesis, one originally formulated by Hahnfeldt

et al. in [16] and a modification of this model by Ergun et al. [12], are considered as optimal

control problem with the aim of maximizing the tumor reduction achievable with an a priori

given amount of angiogenic inhibitors. For both models optimal controls contain a segment

along which the dosage follows a so-called singular control, a time-varying feedback control.

In this paper the efficiency of piecewise constant protocols with a small number of switchings

is investigated. Through comparison with the theoretically optimal solutions, it will be shown

that these protocols provide generally excellent suboptimal strategies that for many initial

conditions come within a fraction of 1% of the theoretically optimal values. When the duration

of the dosages are restricted a priori, for example to a daily or semi-daily regimens, still very

good approximations of the theoretically optimal solution can be achieved.

keywords: biomathematical modeling, optimal control, tumor anti-angiogenesis, realizable proto-

cols

1 Introduction

Tumor anti-angiogenesis is a novel cancer treatment approach that aims at depriving a growing

tumor of the blood vessel network it needs for growth [18]. Initially a growing tumor gets sufficient

supply of oxygen and nutrients from the surrounding host blood vessels to allow for cell duplication

and tumor growth. However, after this state of avascular growth is over, at the size of about 1−3

mm in diameter, this no longer is true and most tumor cells enter the dormant stage in the cell

cycle. These cells then produce vascular endothelial growth factor (VEGF) to start the process

of angiogenesis [13] to recruit surrounding, mature, host blood vessels in order to develop the

capillaries the tumor needs for its supply of nutrients [19]. The lining of these newly developing

blood vessels consist of endothelial cells that are stimulated by VEGF. Surprisingly, the tumor
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also produces inhibitors that at times are used to suppress this process [14]. Anti-angiogenic

treatments rely on these mechanisms by bringing in external inhibitors (e.g., endostatin) that

target the endothelial cells and thus block their growth. This indirectly effects the tumor which,

ideally, deprived of necessary nutrition, regresses. Since contrary to traditional chemotherapy

this treatment targets genetically stable normal cells and not the genetically unstable and fast

duplicating cancer cells, it has been observed that no resistance to the angiogenic inhibitors has

developed in experimental cancer [5]. For this reason tumor anti-angiogenesis has been called

a therapy “resistant to resistance” that provides a new hope for the treatment of tumor type

cancers [17]. Naturally, as such in the last ten years it has been an active area of research not

only in medicine, but also in related disciplines including mathematical biology.

Models that have been formulated can broadly be divided into two groups: those that try

to accurately reflect the biological processes, e.g., [2, 3, 4, 7], and those that aggregate variables

into low-dimensional dynamical systems, e.g., [10, 11, 12, 16]. While the former allow for realistic

large scale simulations, the latter enable a theoretical mathematical analysis. A distinctive place

among the second group is taken up by the model proposed by Hahnfeldt, Panigrahy, Folkman and

Hlatky in [16], a group of researchers then at Harvard Medical School. Modelling the tumor as a

sphere and analyzing the underlying consumption-diffusion process theoretically, in this research a

two-dimensional model of ordinary differential equations for the interactions between the primary

tumor volume, p, and the carrying capacity of the vasculature, q, was developed and biologically

validated. The carrying capacity is the maximum tumor volume sustainable by the vasculature.

Since it largely depends on the volume of endothelial cells, we also call q the endothelial support

of the tumor for short. Several modifications of this model have been introduced and analyzed in

the literature since then with the principal ones those considered by d’Onofrio (at the European

Institute of Oncology in Milan) and Gandolfi (at National Research Council in Rome) in [10] and

by Ergun, Camphausen and Wein from the National Cancer Institute in the U.S. [12]. The model

considered by d’Onofrio and Gandolfi is fully consistent with the modelling implications derived

in [16], but both models share the common feature that the dynamics for the endothelial support

reaches its steady state very fast and that these dynamics have a strong differential-algebraic

character. For this reason Ergun et al. [12] modified the dynamics for the endothelial support

so that the stimulation by the tumor is only proportional to the tumor radius, not its surface

area as it is the case for the other two models. Besides these variations in the dynamics for the

carrying capacity also various growth models for the primary tumor volume have been considered

ranging from the Gompertzian dynamics originally chosen in [16] to classical and generalized

logistic growth [10, 20, 29] to the analysis of growth function only satisfy some general convexity

properties [25]. Even more general structures of the dynamics that only make qualitative growth

assumptions have been analyzed as dynamical systems in [1] and [15].

In various papers (e.g., [12, 22, 23, 28]) the problem of scheduling angiogenic inhibitors for

these models has been analyzed as an optimal control problem: given an a priori specified amount

of angiogenic inhibitors, how should they be scheduled in order to minimize the tumor volume p?

Using methods of geometric optimal control Ledzewicz and Schättler gave complete theoretical so-

lutions to this problem for the original model by Hahnfeldt et al. in [22], for the model considered

by d’Onofrio and Gandolfi in [23] and for the modification by Ergun et al. in [20, 21]. While opti-
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mal controls for the model from [10] give all available inhibitors in one stretch at maximum dose,

and thus correspond to a typical medical application scheme, for the original model formulated

in [16] and its modification in [12] the optimal solution typically contains a segment along which

the control is singular and is given by a time-varying feedback control depending on the current

states p(t) and q(t) of the system. Clearly, with the current state of medical technologies such a

control is not realistic. Thus the question arises how close to the optimal solution one can come

with some simple, piecewise constant, and hence realizable strategies. The value of knowing the

theoretically optimal solution lies in the fact that it provides the benchmark to judge the quality

of heuristically chosen simple strategies and protocols. In [24] we already started looking into this

question and, for example, showed that a predetermined maximum dose is not necessarily a good

strategy, but that a constant dosage equal to the averaged value of the optimal dosages provides

an excellent sub-optimal strategy. Essentially, while constant low dosages simply are ineffective

and do more harm than good, too high a dose unnecessarily wastes inhibitors that can be used

more effectively at lower dosages over a larger time-interval. Hence the question as to what are

good, simple and realistic strategies arises.

In this paper, expanding the discussion in the brief communication [26], we optimize treat-

ment protocols over some simple classes of piecewise constant treatment functions and compare

their effectiveness for the models by Hahnfeldt et al. [16] and Ergun et al. [12]. It will be shown

that these easily computable strategies which divide the overall amount of inhibitors into a small

number of constant dose intervals generally come within 1% of the theoretically optimal values

for realistic initial conditions. We also consider strategies that rather than allowing to optimize

the time periods, a priori fix this structure in time like, for example, giving daily or semi-daily

doses with rest periods during the night. Naturally these strategies do worse, but they still come

reasonably close to the theoretically optimal values. Thus simple piecewise constant approxima-

tions to the optimal singular control provide excellent suboptimal realizable protocols. While it

is not difficult to compute these constant dosages, it is only the knowledge of the theoretically

optimal solution that allows to judge their quality.

2 A Mathematical Model for Tumor Anti-Angiogenesis [16]

This mathematical model was developed and biologically validated by Hahnfeldt, Panigrahy,

Folkman and Hlatky in [16] and, as already stated, its principal variables are the primary tumor

volume, p, and the carrying capacity of the vasculature, q; that is, the maximum tumor volume

sustainable by the vasculature. The dynamics describes the time evolution of these quantities.

Tumor growth is modelled by a Gompertzian growth function with variable carrying capacity q,

i.e., the rate of change in the volume of primary tumor cells is given by

ṗ = −ξp ln

(

p

q

)

(1)

where ξ denotes a tumor growth parameter. The dynamics of the endothelial support consists of

a balance between stimulatory and inhibitory effects and is taken of the following form in [16]:

q̇ = bp −

(

µ + dp
2

3 + Gu
)

q. (2)
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The term bp represents stimulation which is taken proportional to the tumor volume and the three

terms with negative signs represent different types of inhibition. Loss of vascular support through

natural causes (death of endothelial cells etc.) is modelled as µq. Generally µ is small and often

this term is negligible compared to the other factors and thus in the literature sometimes µ is set

to 0 in this equation. The second term dp
2

3 q represents endogenous inhibition due to the fact that

the tumor also produces inhibitors that impact its vascular support. These inhibitors are released

through the tumor surface (hence the scaling of the tumor volume p to its surface area p
2

3 ) and

interact with the endothelial cells that form the lining of the newly developing capillaries [16].

The last term Guq models loss of vascular support due to outside inhibition and the variable u

represents the control in the system. It corresponds to the angiogenic dose rate with G a constant

that represents the anti-angiogenic killing parameter.

The problem which then arises naturally is how to administer a given amount of angiogenic

inhibitors to achieve the “best possible” effect and this leads to optimal control problems. One

possible formulation, considered first in [12] and then taken up by Ledzewicz and Schättler in [22]

for this model and in [21, 23] for its two modifications is to minimize the tumor volume or, what

is the same, maximize the tumor reduction possible with the given amount of inhibitors. Since

the dynamics includes after effects of the treatment - even for the control u = 0 we have that

ṗ < 0 whenever p > q - in a mathematical formulation this is taken into account by leaving the

terminal time T free or, equivalently, minimizing trajectories defined on the semi-infinite interval

[0,∞). We thus consider the following problem:

[H] For a free terminal time T , minimize the value

J(u) = p(T ) (3)

over all piecewise continuous functions u with values in the compact interval [0, a], u :

[0, T ] → [0, a], that satisfy a constraint on the total amount of anti-angiogenic inhibitors to

be administered,
∫ T

0

u(t)dt ≤ A, (4)

subject to the dynamics (1), (2) with initial conditions p0 and q0.

The upper limit a in the definition of the control set U = [0, a] is a previously determined

maximum dose at which inhibitors can be given. Note that in this formulation the time T does

not correspond to a therapy horizon, but instead it is the time when the maximum tumor reduction

is achieved. If p is greater than q when all inhibitors have been exhausted, this minimum for the

tumor volume will only be realized along a subsequent trajectory corresponding to the control

u = 0 when this trajectory reaches the diagonal p = q.

Mathematically it is more convenient to adjoin the constraint as a third variable and define

the problem in R
3 which overall leads to the following dynamical equations:

ṗ = −ξp ln

(

p

q

)

, p(0) = p0, (5)

q̇ = bp −

(

µ + dp
2

3

)

q − Guq, q(0) = q0, (6)

ẏ = u, y(0) = 0. (7)
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Naturally, from their definition all the state variables need to be positive. It was shown by

d’Onofrio and Gandolfi in [10] that this condition is ensured by the dynamics and thus it need

not be imposed as an explicit constraint.

Since we consider problem [H] for arbitrary initial conditions, in this formulation degenerate

cases are included that we want to exclude for our analysis. However, these are related to

initial conditions that are heavily skewed in favor of the vascular support and are biologically not

realistic. We refer the reader to [22] for a detailed discussion of these cases, but here we simply

assume that the initial data are well-posed in the sense that indeed it is possible to lower the

p-value below its initial condition p0. In this case the terminal time T along an optimal solution

is positive. We only consider well-posed initial conditions in this paper.

3 The Optimal Solution for the Model by Hahnfeldt et al. [22]

In [22] we gave a complete solution for the optimal control problem [H] in form of a synthesis of

optimal controls. A synthesis provides a full “road map” to all optimal protocols depending on

the initial condition in the problem, both qualitatively and quantitatively. We briefly summarize

the general structure of optimal trajectories for this case and then proceed to a precise description

of the optimal controls.

Theorem 1 [22] Given a well-posed initial condition (p0, q0), optimal controls are at most con-

catenations of the form 0asa0 where 0 denotes an interval along which the optimal control is given

by a constant control u = 0, that is no inhibitors are given, a denotes an interval along which

the optimal control is given by the constant control u = a at full dose, and s denotes an interval

along which the optimal control follows a time-varying singular feedback control. This control is

only optimal while the system follows a particular curve S in the (p, q)-space, the optimal singular

arc. Depending on the initial condition (p0, q0), not all of these intervals need to be present in

a specific solution. For the biologically most relevant initial conditions typically optimal controls

have the form as0.

Despite their name, singular controls and the corresponding singular curves are to be expected

in a synthesis of optimal controls for a problem of the type [H] for nonlinear models [6]. The

singular control and the geometry of the singular curve S are the most important part of the

design of optimal protocols and in order to construct a full synthesis of solutions, the formulas for

singular controls and corresponding singular trajectories given below are essential. The derivation

of these formulas can be found in [22].

Theorem 2 Using a blow-up of the form x = p
q
, the singular curve S can be parameterized in

the form

µ + dp
2

3 = bx(1 − ln x) (8)

with x ∈ (x∗

1, x
∗

2) where x∗

1 and x∗

2 are the unique zeroes of the equation

ϕ(x) =
b

d
x(ln x − 1) +

µ

d
= 0 (9)
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and satisfy 0 < x∗

1 < 1 < x∗

2 < e. The singular control keeps the system on the singular curve and

is given as a feedback function of p and q or x in one of the following two equivalent forms,

usin(t) = usin(p(t), q(t)) =
1

G

(

ξ ln

(

p(t)

q(t)

)

+ b
p(t)

q (t)
+

2

3
ξ
d

b

q(t)

p
1

3 (t)
−

(

µ + dp
2

3 (t)
)

)

(10)

or, using (8),

usin(t) = usin(x(t)) =
1

G

[(

1

3
ξ + bx(t)

)

ln x(t) +
2

3
ξ

(

1 −
µ

bx(t)

)]

. (11)

There exists exactly one connected arc on the singular curve S along which the singular control is

admissible, i.e., satisfies the bounds 0 ≤ usin(x) ≤ a. This arc is defined over an interval [x∗

` , x
∗

u]

where x∗

` and x∗

u are the unique solutions to the equations usin(x
∗

` ) = 0 and usin(x
∗

u) = a and these

values satisfy x∗

1 < x∗

` < 1 < x∗

u < x∗

2.

The two graphs given in Fig. 1 illustrate the proposition for the following parameter values

taken from [16]: The variables p and q are volumes measured in mm3; ξ = 0.192
ln 10

= 0.084 per day

(adjusted to the natural logarithm), b = 5.85 per day, d = 0.00873 per mm2 per day, G = 0.15

kg per mg of dose per day, and for illustrative purposes we chose a small positive value for µ,

µ = 0.02 per day. For the control limits we have taken a = 75 mg of dose per day and A = 300

mg. Fig. 1(a) shows the plot for the singular control defined by (11) also indicating the values x∗

`

and x∗

u where the control saturates at usin(x) = 0 and usin(x) = a. Fig. 1(b) shows the graph of

the singular curve given by formula (8). In all our figures we plot p vertically and q horizontally

since this easier visualizes tumor reductions. Saturation of the singular control at x∗

` and x∗

u

restricts the admissible part of this petal-like curve to the portion lying between the lines p = x∗

l q

and p = x∗

uq. This portion is marked with a solid line in Fig. 1(b). The qualitative structures

shown in these figures are generally valid for arbitrary parameter values, both for the control and

the singular curve. Naturally, with decreasing values for the upper control limit a the admissible

portion shrinks.

The admissible singular arc becomes the center piece for the synthesis of optimal solutions

that is depicted in Fig. 2. The important curves are the admissible portions of the singular

curve (solid blue curve), portions of trajectories corresponding to the constant controls u = 0

(dash-dotted green curves) and u = a (solid green curves), and the line p = q (dotted black

line) where the trajectories achieve the maximum tumor reduction. This diagram represents the

optimal trajectories as a whole and each of the different curves gives a different optimal trajectory

depending on the actual initial condition. The thick curves in the graph mark one specific such

trajectory. In this case the initial value p0 for the tumor volume and q0 for the endothelial support

are high and require to immediately start with the treatment. The optimal trajectory therefore

initially follows the curve corresponding to the control u = a. Note that, although inhibitors are

given at full dose along this curve, this shows very little effect on the number of the cancer cells in

a sense of decrease. During this period the inhibitors drive down the vascular support and in this

way prevent a further growth of the tumor that otherwise, enabled by ample vascular support,

would occur. Once the trajectory corresponding to the full dose hits the singular arc S, it is

no longer optimal to give full dose and the optimal controls here switch to the singular control.
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Figure 1: Singular control (a, left) and admissible portion of the singular arc (b, right) for model

[H]

The optimal trajectory then follows the singular arc until all inhibitors are exhausted. At this

time therapy is over, but due to after effects the maximum tumor reduction is only realized as

the trajectory for the control u = 0 crosses the diagonal p = q. The corresponding time then is

the optimal free end-time T considered in the problem formulation [OC]. We only remark that

the scenario described here assumes that no saturation occurs along the singular arc. If that

were the case, then optimal controls no longer follow the singular regimen until saturation, but in

fact optimal trajectories leave the singular with the control u = a prior to the saturation point.

Simply continuing the control with u = a is not optimal [22].

Fig. 3 gives the optimal control (a, left) and its corresponding trajectory (b, right) for the

initial conditions (p0, q0) = (12, 000mm3; 15, 000mm3). For this initial condition the optimal

concatenation sequence is as0: first the optimal control is given at full dosage u = a = 75

until the singular curve S is reached at time t1 = 0.091 days. Then administration follows the

time-varying singular control until inhibitors are exhausted at time t2 = 6.558 days. Due to after

effects the maximum tumor reduction is realized along a trajectory for control u = 0 at the optimal

terminal time T = 6.722 days when the trajectory reaches the diagonal p = q. In the next section

we will use these initial conditions to construct realizable protocols and compare their minimum

values. The theoretically optimal minimum value for these data is given by p∗ = p(T ) = 8533.38.

4 Realizable Suboptimal Protocols for the Model by Hahnfeldt

et al. [16]

In this section we now construct several suboptimal, piecewise constant controls - hence realizable

protocols - for the same initial condition (p0, q0) = (12, 000mm3 ; 15, 000mm3) and compare the

minimum values for these classes with the optimal one. We start with controls that give all avail-

able inhibitors in one constant dosage. The following numerical results for the different suboptimal

protocols were obtained using the optimization toolbox of Matlab and the arc-parametrization
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method developed in [27].

One way to approach the problem is to simply give the available amount A of inhibitors at a

constant dose u over time tu = A
u

and to take as the dosage the value û that minimizes the values

of the solutions p̂u at the times tu,

û = arg min p̂u (tu) . (12)

This is a straightforward one-dimensional numerical minimization problem and for the parameter

values specified above the optimal dosage and the final time are given by

û = 45.27 tu = A/û = 6.626 days. (13)

However, this formulation is not fully consistent with the optimal control problem [OC] formulated

above since the terminal values of the trajectories, (p̂u (tu) , q̂u (tu)), do not lie on the diagonal.

For example, we have for the optimal value û = 45.27 that (p̂û (tû) , q̂û (tû)) = (8570.0, 4807.1).

Since the carrying capacity is smaller than the tumor volume, there will still be an additional

tumor reduction after the inhibitors have all been exhausted. The amount of this reduction also

depends on the value of the carrying capacity q̂u (tu) at the endpoint and this indeed slightly

changes the value of the optimal dosage.
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Figure 4: Graph of πu(Tu) over [40, 50] (a, left) and a blow-up over [46, 47] (b, right)

A formulation that is consistent with problem [H] is to give all available inhibitors at rate

u over the interval [0, A
u
] and then still concatenate the trajectory at the point (p̂u (tu) , q̂u (tu))

when all inhibitors have been exhausted with a trajectory corresponding to the control u = 0

that steers the system to its unique associated point (πu (Tu) , πu (Tu)) on the diagonal were the

minimum tumor value for this strategy is realized. Minimizing the p-value on the diagonal gives

the following optimal constant dosage,

u∗ = arg min πu(Tu) = 46.34, (14)

and the corresponding minimal tumor volume is p∗ = 8544.15. Fig. 4 gives the graph of the

function πu(Tu) with a small interval around the optimal value blown up on the right. For com-

parison, if one still adds the u = 0 segment to the trajectory for û = 45.27, then the corresponding
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control minimal value (mm3) terminal time (days) switching time (days) to u = 0

optimal as0 8533.38 6.722 6.558

ū = 45.75 8570.09 6.558 no switching

ū = 45.75 8544.30 6.709 6.558

û = 45.27 8570.00 6.626 no switching

û = 45.27 8544.62 6.777 6.626

u∗ = 46.34 8544.15 6.626 6.474

Table 1: Comparison of minimal values for various constant dosage protocols for problem [H]

value on the diagonal is slightly larger given by πû (Tû) = 8544.62 with final time T = 6.777 days.

Clearly, from a practical point of view there is no significant difference between these values and

both are extraordinarily close to the theoretically optimal value 8533.38.

As another comparison, in [24] we also considered the constant dosage ū = 45.75 that was

computed by averaging the theoretically optimal dosages over the time span of 6.558 days when

drugs are administered (not including the final segment with u = 0). Such a dose can always

be obtained as an immediate byproduct of the calculation of the optimal control. This gave the

value pū = 8570.09. Adding the final segment u = 0 we get the minimum value 8544.30 with final

time T = 6.709 days. Table 1 summarizes the numerical results.

Clearly these constant dose protocols already provide excellent approximations to the the-

oretically optimal control. The value can still be improved upon by increasing the number of

switchings in the control. Since the constant approximations already do so well, we only consider

controls that have one switching, i.e., give a constant dose u1 for time t1 and then give a second

constant dose u2 for time t2 where the second time is calculated so that all inhibitors become

exhausted, i.e.,

u1t1 + u2t2 = A. (15)

Thus this is a 3-dimensional minimization problem with variables u1, t1 and u2 and we denote this

3-tuple by v, v = (u1, t1;u2). As above, if we denote the point when the inhibitors are exhausted

by (p̂v(tv), q̂v(tv)) and the associated point on the diagonal by πv(Tv), then we can define controls

v̂ and v∗ as the corresponding minimizers,

v̂ = arg min p̂v(tv) and v∗ = arg min πv(Tv). (16)

The optimal values for the same data and initial conditions specified earlier are summarized in

Table 2. The dosages are close to each other, but their durations differ by quite a bit. However,

this does not effect the minimum tumor volume much, although overall of course there is im-

provement in the sense that the difference to the optimal value is cut in half. But on an absolute

scale the improvement is not important.

Figs. 5 and 6 give two graphs of the values πv (Tv) when the first and second dosages, respec-

tively, are fixed at their optimal values, u1 = 42.47 and u2 = 49.73. Fig. 7 gives the graphs of the

trajectories corresponding to the controls v̂ and v∗ while Fig. 8 compares the single-dose control

u∗ (in red) with the 2-stage control v∗ (in blue). Consistent with dose intensification along the

optimal singular control, these dosages increase: u2 > u1.
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control u1 t1 (days) u2 t2(days) minimal value (mm3) terminal time (days)

optimal 8533.38 6.722

v∗ 42.47 3.525 49.73 3.022 8539.21 6.736

v̂ 41.83 2.931 47.20 3.758 8540.20 6.843

Table 2: Comparison of minimal values for various 2-stage constant dosages protocols for problem

[H]
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Figure 7: Trajectories for the control v∗, (a, left), and v̂ (b, middle) with comparison (c, right)
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5 The Optimal Solution for the Model by Ergun et al. [20]

Ergun et al. [12] modified the q-dynamics from [16] to

q̇ = bq
2

3 − dq
4

3 − Guq − µq, (17)

with the same interpretation for the parameters. These endogenous inhibition and stimulation

terms, I(q) = dq
4

3 and S(q) = bq
2

3 , result in a significant mathematical simplification of the

q-dynamics since they eliminate the tumor volume p from this equation. The argument for this

change put forth in [12] is the differential-algebraic nature of the original model with a q-dynamics

that reaches its steady-state extremely fast. With the modification proposed this no longer is the

case and overall there is a better balance in the substitution of stimulation and inhibition. Since

p and q tend to move together in steady state, and the steady state is what the model intends

to capture, there is some justification to replace p with q in the q-dynamics and arrive at an

equation of the form

q̇ = bqγ − bqγ+
2

3

for the endogeneous inhibition and stimulation terms. A choice of γ = 1 in this sense would

be consistent with the spatial analysis carried out in [16] while the choice γ = 2

3
made by

Ergun, Camphausen and Wein is consistent with the inhibition term being proportional to the

tumor radius, not its surface area. If we replace the q-dynamics (2) with (17) to obtain problem

formulation [E], then it turns out that the structure of optimal solutions indeed is qualitatively

identical [21, 20]. In fact, for this model Theorem 1 remains true verbatim. Thus, while clearly

simplifying the dynamics, this modification does retain essential qualitative features of the original

model. Of course, the quantitative formulas for the singular control and arc change and these are

given below in Theorem 3.

Theorem 3 There exists a locally minimizing singular arc S in (p, q)-space defined as a function

of q over an interval q∗` ≤ q ≤ q∗u by

psin(q) = q exp

(

3
b − dq

2

3 − µq
1

3

b + dq
2

3

)

. (18)
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Figure 9: Singular control (a, left) and admissible portion of the singular arc (b, right) for problem

[E]

The corresponding singular control is given in feedback form as

usin(q) =
1

G

(

b − dq
2

3

q
1

3

+ 3ξ
b + dq

2

3

b − dq
2

3

− µ

)

(19)

and the values q∗` and q∗u are the unique solutions to the equation usin(q) = a in (0,

√

(

b
d

)3
). �

The two graphs given in Fig. 9 illustrate the singular control and the geometry of the singular

curve for this model and the same system parameter values considered before. Due to the changes

in the dynamics, however, we now have taken a = 15 mg of dose per day and A = 45 mg for

the control limits. In this case saturation of the singular control only occurs at the upper limit

u = a and restricts the admissible part to the interval [q∗` , q
∗

u]. This portion is marked as the solid

curve in Fig. 9(b). In this case the lower limit q∗` is so small that for all practical purposes this

saturation can be ignored. Again, the qualitative structure shown in these figures is generally

valid for arbitrary parameter values, both for the control and the singular curve. But in this case

the admissible portion on the singular arc shrinks with decreasing values for the upper control

limit a until it disappears for some low control limit a∗ when the singular control no longer is

admissible.

Like in the model by Hahnfeldt et al. the singular curve becomes the center piece of a synthesis

of optimal controlled trajectories and this synthesis shown in Fig. 10 is qualitatively identical

with the previous one. Fig. 11 gives the optimal control and its corresponding trajectory for

the initial conditions (p0, q0) = (8, 000mm3; 10, 000mm3). For this initial condition the optimal

concatenation sequence also is as0: the optimal control is given at full dosage u = a = 15 until

the singular curve S is reached at time t1 = 1.341 days. Then administration then follows the

time-varying singular control for t2 = 3.722 days until all inhibitors are exhausted after 5.062

days. Due to after effects the maximum tumor reduction is realized along a trajectory for control

u = 0 at the optimal terminal time T = 9.378 days when the trajectory reaches the diagonal

14



p = q. The theoretically optimal minimum value for these data is given by p∗ = p(T ) = 2242.65.

Note the significantly longer pieces along the constant controls u = a and u = 0 for this model,

the effect desired in this modification of the original model.
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Figure 10: Synthesis of optimal trajectories for problem [E]
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6 Realizable Suboptimal Protocols for the Model by Ergun et

al. [12]

We again consider piecewise constant controls for this initial condition (p0, q0) = (8, 000mm3;

10, 000mm3) and compare the minimum values for these classes with the theoretically optimal

value. Although the simulation is done for a different initial condition and the parameter values

are not directly comparable because of the different q-dynamics, we shall see that the quality of

approximations is equally excellent for this model. We start with strategies that give the full

amount A of inhibitors at a constant rate and minimize the tumor volume achievable in this way.

Here, since the deviations are minimal, we now only consider the optimal constant dose where

a trajectory with the control u = 0 has been added to reach the diagonal, i.e., the control u∗.

The best constant dosage is u∗ = 9.246 and is given over t1 = 4.867 days; then the control is still

given by u∗ = 0 for t2 = 4.735 days until the minimum tumor volume is realized as the trajectory

crosses the diagonal at the time T = 9.602 days. Fig. 12(a) shows the graph of the associated

value function πu(Tu) for dosages lying between u = 8 and u = 11 around the optimal value u∗

and Fig. 12(b) shows the best constant dose trajectory. The minimal tumor volume realized this

way is p∗ = 2264.22 and only has a relative error of 0.97% compared with the optimal value.
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Figure 12: Graph of πu(Tu) for problem [E] over [8, 11]

For comparison, in [24] we considered the constant dosage ū = 8.888 that was computed by

averaging the theoretically optimal dosages over the time span of 5.063 days when drugs are

administered along the optimal solution (not including the final segment with u = 0). For this

strategy virtually the identical value pū = 2264.44 is obtained at T = 9.732 days. In fact the

value πu(Tu) is rather flat around its minimum value and any control between u = 8 and u = 11

gives excellent approximations.

Going to a 2-stage protocol the approximations of the optimal value can still be improved

upon. Following the same scheme and using the same notation as in section 4, the minimizing

controls v∗ = v∗ = arg minπv(Tv) are given by u1 = 15.00 for time t1 = 1.273 days and u2 = 6.710

for t2 = 3.861 days with t3 = 4.240 the time along the final u = 0 segment until the diagonal is

reached at time T = 9.374 when the minimum value is realized. The optimal value decreases to

2242.75 compared with the optimal value of 2242.65 and thus for any practical standard such a
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Figure 13: A cross section through the graph of πv(Tv) for problem [E] at u1 = 15.00

protocol duplicates the optimal solution. In this case the optimal two-stage regimen starts out

at maximum dose (like the theoretically optimal control) and then lowers the value to reflect the

lower dosages along the singular control. Fig. 13 gives a cross section of the value πv(Tv) when

the first dosage is kept fixed at its optimal (and maximum) value u1 = 15.00. Fig. 14 gives the

graph of the corresponding optimal trajectory.

We summarize the results for the constant and 2-stage protocols in Table 3:
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Figure 14: Trajectory corresponding to the optimal two-dosage protocol v∗ for problem [E]
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control u1 t1 u2 t2 t3 (along u3 = 0) T minimal value (mm3)

optimal 15.00 1.341 singular 3.722 4.315 9.378 2242.65

u∗ 9.246 4.867 − − 4.735 9.602 2264.22

ū 8.888 5.063 − − 4.669 9.732 2264.44

v∗ 15.00 1.273 6.710 3.861 4.240 9.374 2242.75

Table 3: Comparison of the minimal value for piecewise constant dosage protocols for problem

[E]; t1, t2 and t3 denote the times of administration (in days)

7 Daily and Semi-Daily Regimes

In the two approaches considered above the durations of the various dosages are included as

optimization variables; in other words, the times for how long dosages are given are unrestricted.

It is sometimes of practical interest to specify these durations a priori and consider daily or

even semi-daily dosages (e.g., give the dosage for 8 or 12 hour periods and then include a rest

period during the night). Clearly any such strategy reduces the flexibility and thus the number of

segments needs to be increased to obtain a similar degree of approximation. It appears reasonable

to give the full amount A of inhibitors over the same time period as the optimal control does and

in this section we still consider these optimization problems for the two models (and the same

data as before).

For the model by Hahnfeldt et al. all inhibitors are given over 6.56 days and if we specify to

give all available inhibitors in 6 constant daily doses, then the optimal dosages are given by

u1 = 46.61, u2 = 45.31, u3 = 48.15, u4 = 50.71, u5 = 53.20, and u6 = 56.02 (20)

and the tumor volume still decreases along the trajectory for u = 0 for time t7 = 0.169 days

until the diagonal p = q is reached with minimal value p(T ) = 8544.4. Note that there is a small

dip in the dosage from the first to the second day and then the dosages gradually increase over

the remaining days. This is in agreement with the structure of the theoretically optimal control

that initially applies maximum dose and then switches to the singular control. Since the piece

along which the optimal control is at maximum is small, the first daily value is significantly lower

than a = 75, but it still is higher than the second daily dose. Along the optimal singular arc the

dose intensifies and this is reflected in the increasing values of the daily doses over the remaining

days. Still, specifying the time structure by restricting to daily dosages reduces the quality of

the approximation. The minimal value of 8544.30 for the 6 piece strategy is virtually identical

with the optimal constant dose value, but the higher number of pieces does not yet make up for

the loss of freedom by choosing the times in a 2-piece control when the minimal value is 8539.2.

Fig. 15 shows the daily dosages and corresponding trajectory in the (p, q)-space with p shown

horizontally and q vertically.

Similarly, for the model consider in Ergun et al. [12] the inhibitors are being used up in 5.062

days along the optimal solution. In fact if we run the minimization over 6 constant daily doses,

then it turns out that the optimal dose for the sixth day is equal to u = 0. Minimizing a daily
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Figure 15: Optimal daily doses (a, left) and corresponding trajectory (b, right) for problem [H]

and initial conditions (p0, q0) = (12, 000mm3; 15, 000mm3)

regimen therefore leads to the following optimal dosages,

u1 = 15.00, u2 = 9.73, u3 = 5.45, u4 = 6.88, and u5 = 7.94 (21)

with the minimum value realized given by 2243.15. Again, this is the value that the trajectory

corresponding to the control u = 0 realizes as the diagonal p = q is crossed, in this case at time

at 9.373 days. Here, and the reason being the slower q-dynamics of this modification, the optimal

daily strategy is comparable to the optimal 2-stage regimen v∗. Fig. 16 shows these dosages and

the corresponding trajectory.
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Figure 16: Optimal daily doses (a, left) and corresponding trajectory (b, left) for problem [E]

and initial conditions (p0, q0) = (8, 000mm3; 10, 000mm3)

Again the pattern resembles the structure of the optimal control. During the first day the

control is at maximum level and then drops down. The value for the second day is an average of

the maximum dose with the much lower singular control. In the optimal solution the dosage is

still at maximum for about 8 hours while it then is lowered to the value u = 3.53 at the onset of

the singular arc. In the dose for the second day this averages out to a value that still is higher
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than the third dose when the optimal control is singular for the entire period, and hence much

smaller than the maximum. But the dosage intensifies along the singular arc (see Fig. 11) and

thus the values increase. The last daily dosage on the fifth day is determined by the fact that

all inhibitors get used up, but still increases because of dose intensification along the singular arc

and the fact that the optimal time exceeds 6 hours, so an average over slightly more than one

day is being taken.

If one were to include rest periods into each daily regimen, say inhibitors are given at a

constant rate for 8, respectively 12, hours, then the 12 hour scheme would use up the amount

A = 45 in exactly 6 daily dosages at the maximum u = 15 and, due to the requirement that

all inhibitors should be exhausted, no optimization becomes feasible. Similarly, if we only give

inhibitors for 8 hours, then, in order to use up all inhibitors, 9 days need to be considered

at maximum dosage. The trajectories corresponding to these strategies are shown in Fig. 17

and naturally the quality of approximation decreases further. As a reference, in this and the

subsequent figures the black curve is the optimal trajectory. For the 12 hour scheme the realized

value is given by p12hr = 2262.29 and for the 8 hour scheme by p8hr = 2335.99. While the 12

hour value still realizes a value in the range of the optimal constant dosage, degradation starts

to occur if the rest-periods become too large. Longer rest periods allow the vascular support to

recover and with the 8 hour scheme the relative error now is 4.16%, quite large compared to other

values.
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Figure 17: Trajectories corresponding to 12 (a, left), respectively, 8 (b, right) hour daily doses

for problem [E]

Fig. 18 (a) compares the corresponding optimal strategies when the upper limit a in the

control set has been doubled to a = 30. The solid red lines correspond to the optimal 12 hour

doses while the solid blue lines giving the optimal daily doses when a = 15. For comparison, the

dashed lines are the average values of the 12 hour doses for the full day and these are close to

these optimal daily values. The optimal trajectory for the semi-daily doses is shown in Fig. 18

(b). In this figure we also kept the optimal trajectory for a = 15 as the black curve and it is seen

how closely now the semi-daily doses approximate this particular trajectory. But of course the

optimal control for problem [E] with a = 30 is different and in this case the maximum tumor

reduction possible is given by p∗∗ = 2231.98 compared with p∗ = 2242.65 when a = 15. It is

interesting to note that a higher initial boost which drives the system to the singular arc faster
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Figure 18: Comparison of the optimal daily doses for a = 15 with the optimal 12 hour dosages

for a = 30 (a, left) and trajectory of the optimal 12 hour regimen for a = 30 (b, right)

leads to a small decrease in the optimal value. Thus the optimal overall strategy seems to be

to get to the singular arc as fast as possible by a high dose bolus injection (mathematically an

impulse) and then follow the singular arc with much smaller dosages.

8 Conclusion

The optimal solutions for mathematical models for tumor anti-angiogenesis formulated by Hah-

nfeldt et al. [16] and its modification by Ergun et al. [12] contain a segment where the opti-

mal control is given by a time-varying feedback function of the state variables p and q, the

primary tumor volume and its carrying capacity, and thus is not realizable. In this paper

we have shown for both models that easily computable, piecewise constant controls give ex-

cellent suboptimal protocols. For the model by Hahnfeldt et al. [16] and the initial condition

(p0, q0) = (12, 000mm3; 15, 000mm3) they come within 0.25% of the optimal tumor values

for the specified data. Similarly, for the model by Ergun et al. [12] and the initial condition

(p0, q0) = (8, 000mm3; 10, 000mm3) these values lie within 1% of the optimal value. In fact in

each case the corresponding value functions are relatively flat around the optimal solution and

thus any dosage that is reasonably close to the optimal values does not show any degradation in

the approximation. Similar conclusions can be drawn over a wide range of initial conditions (c.f.,

also [24]). From a practical point of view the conclusion can be drawn that while constant dosage

protocols indeed provide very good approximations to the optimal solutions, the choice of the

actual dosage, however, does make a difference. Dosages that are too small simply may not show

any effect at all and dosages that are too high unnecessarily waste inhibitors. In this sense, for

these models for tumor anti-angiogenesis the calculation of the optimal constant dosage, a simple

and easy numerical procedure, always is worthwhile.
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